

on n-uniform tilings

Akira BAES

ULB - Faculty of Sciences - Computer Science Master thesis presentation 2020-2021 Promotor: Stefan LANGERMAN

Presentation Structure

1. What is a roller?

- a. Rolling cube
- b. Polyhedron
- c. Tessellation

2. Rolling on a tessellation

- a. Notable results (video)
- b. Rolling patterns results
- c. Desirable traits

3. Future research and Conclusion

What's rolling a shape?

Cubes on square grid have the monopoly on rolling puzzles

Cube rolling: well known

- Can start from anywhere on the grid
- Can reach everywhere on the grid
 with any face (face-complete)
 - with two orientations (180°)

Other rolling: unknown

- Some research on tetrahedron
- Some known rolling pairs (dices)
- Tessellation polyhedron (motivation)

What if non-cube... \rightarrow New research!

Other rolling: research

- What would it take?
- Shape: Polyhedron with polygon faces
- Grid: Cover the plane using polygons
- (=tessellations / tiling)
- Roll on the plane, look at reached area

Other rolling: polyhedrons

Useable for rolling:

- Convex: can physically roll on faces
- Regular polyhedron as faces

All convex regular-faced polyhedrons!

• 5 Platonic solids

Photo: MathsGear

• 13 Archimedean solids

4 Prisms: 3, 6, 8, 12
4 Antiprisms: 4, 6, 8, 12

Renders via Wikipedia

- 5 Platonic solids
- 13 Archimedean solids + 2 chiral
- 92 Johnson solids + 5 chiral
- 4 Prisms
- 4 Antiprisms

125 polyhedron nets to check!

Other rolling: tilings

Useable for rolling:

- Regular polygons as tiles
- Tiles the 2D plane
- Some form of description

 \rightarrow k-uniform tessellations

Tessellations polygons

- Useable n-gons in the 2D plane:
- Triangles
- Squares
- Hexagons
- Octagons
- Dodecagons

Angles that can sum to 360°

Other rolling: regular tilings

platonics_4^4						

Other rolling: mixed tilings

Tiling description: Vertex

Vertex type = polygons next to vertex

3,3,4,3,4 repeated \rightarrow tiling $3^2.4.3.4$

1-Uniform tilings: same polygon3 Platonics tilings

1-Uniform tilings: mixed polygons8 Archimedeans tilings

2-Uniform Tessellations

Defined by 2 vertice types repeated

3,3,3,3,3,3
3,3,4,3,4

tiling (3⁶; 3².4.3.4) \rightarrow

N-Uniform Tessellations

- 1 vertex type:
 1-uniform (11 tilings)
- 2 vertex types:
 - 2-uniform (20 tilings)
- 3 vertex types:

• etc.

• 3-uniform (61 tilings)

N-Uniform Tessellations

- In my set:
- 1-uniform (11)
- 2-uniform (20)
- 3-uniform vertex-homogenous (39)

Only 70 tessellations tested

N-Uniform Tessellations

(update)

In my set:

- 1-uniform (11)
- 2-uniform (20)
- 3-uniform (61)
- 4-uniform (39)

Only 131 tessellations tested

Rolling on a tessellation

- Dual graph of the polyhedron
- Net of poly facesWith orientation
- Dual graph of the tiling
- Supertile with subtiles
- Parallelogon (translations only)

Rolling on a tessellation

Rolling is:

- Exploring the dual graph of
 - the polyhedron (net)
 - the tiling (tiles)
- while keeping track of the orientation
- and plane coordinates
- and matching the face/tile shape

Rolling on a tessellation

- Rolling area = all reachable tiles See video: we have different patterns!
- All the plane, a band, a bounded area, of the plane but with holes.

Different rolling patterns

- Plane rollers
 - 2 symmetry vectors
- Hollow plane rollers
 - 2 symmetry vectors
 - holes
- Band rollers
 - 1 symmetry vector
- Bounded area rollers
 - no symmetry vector

Determining patterns

- Written a proof to computationally test a
- Polyhedron
- Tiling
- Starting position and orientation

And determine its biggest rolling area

Rolling pattern results

Results (updated)

- 125 polyhedrons & 131 tessellations
- 145 Plane rollers (44 stable)
- 588 Hollow Plane rollers (284 quasi)
- 2623 Band rollers
- 7362 Bounded rollers
- 581 incompatible pairs

Note: Stability

In some pairings, depending on the orientation, face, and tile where you start, you could roll the plane or get stuck. <u>Starting tiles that guarantee that you</u> can roll the plane are called *stable tiles*. A pair that is stable everywhere is a stable roller.

- You can start anywhere: stability
- Can roll everywhere: plane roller
 - with every face: face-complete
 - with every orientation: orientation-complete
- Few faces?

Cube on Square Grid:

- Can start anywhere: stable
- Can roll everywhere: plane roller
 - with every face: face-complete
- 6 faces

- J12 (triangular bipyramid) on Triangle Grid:
- Can start anywhere: stable
- Can roll everywhere: plane roller
 - with every face: face-complete
- 6 faces
- (2 tetrahedrons)

- J1 (square pyramid) on (3⁶;3²4.3.4), 3²4.3.4, (3³4²;3²4.3.4)₁, (3⁶;3³4²;3²4.3.4):
- Stable on square tiles
- Plane roller
- 5 faces

All the other rolling pairs are useable

- Quasi-plane rollers: avoid incompatible
- Hollow plane rollers: patterns
- Band and Area rollers: in action games

Recapitulative images

Reached tiles

- Face-completeness
- Orientation-completeness
- Incompatible tiles

Stable tiles (grey)
Unstable (white)

Recapitulative images

Data available for all puzzle makers!

Roller Pair	Reachability	Stability	Faces
hexagonal antiprism 3^4x6	hexagonal_antiprism 1/38 3^4x6		3^4x6 with hexagonal_antiprism 13 4 4 5 0 11 6 7 11 8 9 10 4 4 5 0 11 12 4 13 5 0 11 12 4 10 10 10 10 10 10 10 10 10 10
$ ext{j27}\ 3^3x4^2$	j27 14/26 3^3x4^2		3^3x4^2 with j27

https://drive.google.com/file/d/17RAs010hV3DfONttQ8w KTIjFKHSPUWY

Future research

There is more to be done!

- Hyperbolic plane tilings, aperiodic, radial (spirals? branches?)
- Generate tilings
- Non-regular, Concave polyhedron
- More data to extract for puzzles: path length, rotations

Conclusion

I hope this work will lead to more polyhedrons being used in puzzles!

